Remark on a Recent Converse of Hölder′s Inequality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Converse of Jensen’s Discrete Inequality

There are many important inequalities which are particular cases of Jensen’s inequality among which are the weighted A − G − H inequality, Cauchy’s inequality, the Ky Fan and Hölder’s inequalities. One can see that the lower bound zero is of global nature since it does not depend on p, x but only on f and the interval I whereupon f is convex. We give in 1 an upper global bound i.e., depending o...

متن کامل

On the Converse of Talagrand's Influence Inequality

In [Tal94], Talagrand showed a generalization of the celebrated KKL theorem. In this work, we prove that the converse of this generalization also holds. Namely, for any sequence of numbers 0 < a1, a2, . . . , an ≤ 1 such that ∑n j=1 aj/(1 − log aj) ≥ C for some constant C > 0, it is possible to find a roughly balanced Boolean function f such that Infj [f ] < aj for every 1 ≤ j ≤ n.

متن کامل

A Remark on the Mandl’s Inequality

So, we have (1.2) p1p2 · · · pn < (pn 2 )n (n ≥ 9), where also holds true by computation for 5 ≤ n ≤ 8. In other hand, one can get a trivial lower bound for that product using Euclid’s proof of infinity of primes; Letting En = p1p2 · · · pn−1 for every n ≥ 2, it is clear that pn < En. So, if pn < En < pn+1 then En should has a prime factor among p1, p2, · · · , pn which isn’t possible. Thus En ...

متن کامل

Remark on a Recent Paper by Hollcroft

The method in mathematical logic invented by Schönfinkelf and developed in detail by Curry | is important in that it completely eliminates the variable from the formal presuppositions of logic and mathematics. Constructed according to Schönfinkel's scheme the primitive language of mathematical logic consists only of a few constants; variables, if wanted as a convenience, are introduced afterwar...

متن کامل

Remark on Ozeki Inequality for Convex Polygons

This paper gives proof of a discrete inequality that represents Ozeki’s inequality for convex polygons and its converse. The proof is based on determining eigenvalues of one nearly tridiagonal symmetric matrix.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1994

ISSN: 0022-247X

DOI: 10.1006/jmaa.1994.1021